Midsemestral examination Second semester 2011 M.Math.IInd year Algebraic Number Theory B.Sury

Q 1.

If L/K is a Galois extension of number fields and P is a prime ideal of O_K , then prove that the Galois group acts transitively on the set of prime ideals of O_L lying over P.

OR

If a Dedekind domain is a UFD, show that it must be a PID.

Q 2.

Show that the class number of $\mathbf{Q}(\sqrt{-5})$ is 2.

OR

Consider the field $K = \mathbf{Q}(\alpha)$ where $f(\alpha) = 0$ with $f(X) = X^3 - X - 1$. Determine the discriminant and deduce that $O_K = \mathbf{Z}[\alpha]$. Find also the best integer given by the Minkowski bound.

Q 3.

Let L/K be an extension of number fields and let \mathcal{D} be the discriminant ideal. If a prime ideal P of O_K contains \mathcal{D} , prove that P ramifies in L.

OR

Let A be a Dedekind domain and K, its quotient field. Let L be a Galois extension of K and B, the integral closure of A in L. If I is a proper ideal of A, prove that $IB \cap A = I$.

Q 4.

Consider the cyclotomic field $\mathbf{Q}(\zeta_n)$ generated by n-th roots of unity. If p is a prime number not dividing n, describe the ideals P_1, \dots, P_g of $\mathbf{Z}[\zeta_n]$ lying over p. Find also the norm of each ideal P_i .

OR

Describe with proof the totally ramified extensions of \mathbf{Q}_p .

Q 5.

Let l/k be an unramified extension of p-adic fields (that is, extensions of \mathbf{Q}_p). Prove that the norm map from the units of l to those of k is surjective.

OR

If V is a finite-dimensional vector apace over \mathbf{Q}_p , show that there is a unique extension of the p-adic absolute value $|.|_p$ to V.

Q 6.

Let $p \equiv 1 \mod 4$ be a prime. Prove that $x^2 - py^2 = -1$ has infinitely many solutions.

OR

Prove that the fundamental unit of $\mathbf{Q}(\sqrt{d^2-1})$ is $d+\sqrt{d^2-1}$ for each squarefree integer $d \geq 2$.